A Hierarchical Word Sequence Language Model
نویسندگان
چکیده
Most language models used for natural language processing are continuous. However, the assumption of such kind of models is too simple to cope with data sparsity problem. Although many useful smoothing techniques are developed to estimate these unseen sequences, it is still important to make full use of contextual information in training data. In this paper, we propose a hierarchical word sequence language model to relieve the data sparsity problem. Experiments verified the effectiveness of our model.
منابع مشابه
An Improved Hierarchical Word Sequence Language Model Using Directional Information
For relieving data sparsity problem, Hierarchical Word Sequence (abbreviated as HWS) language model, which uses word frequency information to convert raw sentences into special n-gram sequences, can be viewed as an effective alternative to normal n-gram method. In this paper, we use directional information to make HWS models more syntactically appropriate so that higher performance can be achie...
متن کاملWritten word recognition by the elementary and advanced level Persian-English bilinguals
According to a basic prediction made by the Revised Hierarchical Model (RHM), at early stages of language acquisition, strong L2-L1 lexical links are formed. RHM predicts that these links weaken with increasing proficiency, although they do not disappear even at higher levels of language development. To test this prediction, two groups of highly proficie...
متن کاملA Generalized Framework for Hierarchical Word Sequence Language Model
Language modeling is a fundamental research problem that has wide application for many NLP tasks. For estimating probabilities of natural language sentences,most research on language modeling use n-gram based approaches to factor sentence probabilities. However, the assumption under n-grammodels is not robust enough to cope with the data sparseness problem, which affects the final performance o...
متن کاملA hierarchical Dirichlet language model
We discuss a hierarchical probabilistic model whose predictions are similar to those of the popular language modelling procedure known as 'smoothing'. A number of interesting differences from smoothing emerge. The insights gained from a probabilistic view of this problem point towards new directions for language modelling. The ideas of this paper are also applicable to other problems such as th...
متن کاملInvestigation on language modelling approaches for open vocabulary speech recognition
By definition, words that are not present in a recognition vocabulary are called out-of-vocabulary (OOV) words. Recognition of unseen or new words is an important feature that is always desired in any real-world large vocabulary continuous speech recognition (LVCSR) system. However, human languages are complex in nature due to wide varieties of morphological richness such as inflections, deriva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014